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CMOS-compatible 60 GHz Harmonic Optoelectronic Mixer 

Hyo-Soon Kang and Woo-Young Choi 

Department of Electrical and Electronic Engineering, Yonsei University,  
134 Shinchon-dong, Seodaemoon-gu, Seoul 120-749, Korea 

 
Abstract  — We present 60GHz harmonic optoelectronic 

mixers based on Si avalanche photodetectors (APDs) fabricated 
by the standard complementary metal-oxide-semiconductor 
(CMOS) technology. The characteristics of APDs and harmonic 
optoelectronic mixers are investigated in order to optimize their 
performances. At the avalanche on-set voltage of APD, efficient 
harmonic optoelectronic mixing at 60 GHz band is obtained. In 
order to demonstrate the feasibility of applying harmonic 
optoelectronic mixers for fiber-supported millimeter-wave 
communication systems, down-link data transmission of 5 MS/s, 
32 quadrature modulation (QAM) signals in 60 GHz band is 
successfully performed. 

Index Terms — Avalanche photodiodes, CMOS compatible 
photodetectors, millimeter wave communication, optoelectronic 
mixers. 

I. INTRODUCTION 

Fiber-supported millimeter-wave communication 
technology is a promising technology for next generation 
broadband communication systems.  It can take advantages of 
both low-loss, huge bandwidth of fiber-optic technology, and 
large bandwidth, high directivity, and high frequency 
reusability of millimeter-wave wireless links. In these systems, 
large bandwidth data and high-frequency signals are 
distributed to many base stations through optical fiber and 
then radiated to free-space. As a consequence, implementation 
of simple and low-cost base stations is very important. Several 
approaches for achieving this have been reported. For the 
remote up-conversion method, optical devices such as 
semiconductor optical amplifier (SOA) and electroabsroption 
modulator (EAM) [1] and InP-based phototransistors 
including high electron-mobility transistors (HEMTs) [2] and 
heterojunction phototransistors (HPTs) [3] are utilized. 
Although these approaches can significantly simplify the base 
station architecture, InP-based components are, as of yet, not 
very cost-effective. 

In another approach, photodetectors such as GaAs metal-
semiconductor-metal photodetectors [4], InGaAs p-i-n 
photodiodes [5], and Si avalanche photodiodes (APDs) [6, 7] 
have been used for simultaneous photodetection and 
frequency mixing. However, the optoelectronic mixers based 
on theses photodetectors require output signal amplification to 
compensate conversion loss and it is not an easy task to 
integrate these photodetectors with necessary electronic 
circuits in a cost-effective manner. 

As a possible solution for this problem, we have previously 
proposed CMOS-compatible OptoElectronic Mixer (CMOS-
OEM) and demonstrated frequency up-conversion into 30 

GHz band [8]. In this paper, we demonstrate that operation of 
CMOS-OEM can be extended to 60 GHz as a harmonic 
optoelectronic mixer.  Our harmonic CMOS-OEM is based on 
CMOS-compatible Si APD, which realized with the standard 
0.18 ㎛ CMOS process. We optimize the performance of the 
harmonic CMOS-OEM and demonstrate the data transmission 
of 5 MS/s 32 QAM baseband signals, which is harmonic 
frequency up-converted into the 60 GHz band. 

II. AVALANCHE PHOTODETECTOR STRUCTURE 

Fig. 1 shows cross-sectional diagram of fabricated 
avalanche photodetectors. In order to eliminate the slow 
diffusion current in substrate, we only adopt the vertical P+/n-
well junction [9]. The multi-finger electrodes with narrow (0.5 
㎛ ) finger spacing are formed to collect photogenerated 
carriers effectively without going through the lateral diffusion 
path. Furthermore, this vertical PN junction structure can 
mitigate the edge breakdown in the avalanche regime. The 
active area of the APD is about 30×30 ㎛ 2 and the salicide 
process is blocked for the optical window. 

III. AVALANCHE PHOTODETECTOR CHARACTERISTICS 

For the APD characterization, 850 nm optical signal from a 
Fabry-Perot LD was injected into the device using a lensed-
fiber. Fig. 2 shows I-V characteristics with and without optical 
illumination. The incident optical power was 1 mW measured 
at the end of the lensed fiber. In Fig. 2, the avalanche 
breakdown can be observed at the reverse bias voltage of 
about 10.4 V under dark condition. The fabricated APD has 
maximum responsivity of 0.36 A/W and avalanche gain of 86 

Fig. 1. Schematic cross-section of fabricated APD.
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at the reverse bias voltage of 10.4 V under 1 mW optical 
illumination. 

For measurement of optical modulation frequency response, 
a 20 GHz electro-optic modulator and a vector network 
analyzer were used. Fig. 3 shows optical modulation responses 
of the fabricated APD at different bias voltages. When the 
applied reverse voltage increases, the responsivity of the 
photodetector increases as the bias voltage approaches the 
reverse breakdown voltage. At the reverse bias voltage of 10.4 
V, 3-dB bandwidth of fabricated photodetector is about 2 GHz, 
which indicates that the harmonic optoelectronic mixer based 
on CMOS-APD can be utilized for broadband Gb/s data 
transmission. 

IV. HARMONIC OPTOELECTRONIC MIXING 

Harmonic frequency up-conversion using the CMOS-OEM 
is implemented in the manner shown in Fig. 4. Electrical LO 
signal is injected to the RF port which is tied to n-well contact 
and modulated optical IF signal is illuminated to the device. 
Frequency up-converted signal is taken out from the P+ 
contact to eliminate the slow diffusion components in 
substrate region. With the help of nonlinear characteristics of 
photodetectors due to the avalanche process [6, 7], harmonic 
CMOS-OEM can perform photodetection and frequency 
conversion simultaneously. Fig. 4 also shows the up-converted 
signal spectrum of harmonic CMOS-OEM when 30.25 GHz 
electrical LO and 500 MHz optical IF signals are applied to 
the device. Second harmonic LO at 60.5 GHz (2·fLO), upper 
side band (USB) at 61 GHz (2·fLO + fIF) and lower side band 
(LSB) at 60 GHz (2·fLO – fIF) are clearly observed. 

In order to optimize harmonic CMOS-OEM, bias voltage 
dependence of frequency up-converted signal powers (USB 
and LSB) were measured and the results are shown in Fig. 5. 
As the reverse bias voltage increases, frequency up-converted 
signal power increases and has maximum value at 10.4 V. 
This is because at this voltage CMOS-APD has maximum 
avalanche gain and, therefore, maximum photodetected signal 
power. 

We also measured fundamental frequency up-converted 
signal powers (fLO + fIF and fLO - fIF) as well as harmonic one for 
comparison and the results are shown in Fig. 5. The 
conversion efficiency for the second-order mixing is about 11 
dB lower than the fundamental mixing owing to the small 
second-order harmonic nonlinear coefficient of I-V curve and 
cable loss used in the experiment at 60 GHz band. In the 
experiment of second harmonic frequency up-conversion, 35.5 
dB gain amplifier was used for boosting up the second-order 

Fig. 2. Current-voltage (I-V) characteristics of the APD 
under dark and illumination condition. The incident optical 
power is 1 mW. 
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harmonic up-converted signal power. 
 

V. DATA TRANSMISSION DEMONSTRATION 

Utilizing millimeter-wave harmonic CMOS-OEM, 60 GHz 
remote up-conversion downlink data transmission was 
performed. Fig. 6 shows the experimental setup. In the central 
office, 850 nm light was modulated by 5 MS/s 32 QAM data 
at 500 MHz IF signal using an EOM and transmitted through 
2 m standard single-mode fiber. At the antenna base station, 
optical IF was photodetected and frequency up-converted to 
60 GHz band by CMOS-OEM. The revere bias voltage of 10.4 
V was applied since this provides the maximum frequency up-
converted signal power as shown in Fig 5. Although this bias 
voltage is much larger than typical bias voltages used for 
CMOS circuits, CMOS circuit techniques such as dc-dc up 

converters [10] can easily solve this problem. The harmonic 
up-converted signal was passed through amplifier and band 
pass filter (BPF) for amplification and undesired signals 
rejection, respectively. The incident optical power at CMOS-
OEM was about 1 mW. To examine the performance of 
harmonic CMOS-OEM, 60 GHz band signal is frequency 
down-converted using a sub-harmonic electric mixer and then 
demodulated by a vector signal analyzer (VSA). In our 
experimental setup, LO signal generated by a frequency 
synthesizer was divided by an RF power splitter and used for 
both harmonic CMOS-OEM and electric mixer. Fig. 7 shows 
the 60 GHz output signal spectrum at the output of antenna 
base station, and constellation and eye diagram of the 
demodulated 5 MS/s 32 QAM data signal at the VSA. The 
measured EVM was approximately 5.42 %, which 
corresponds to about 21.3 dB SNR.  

VI. CONCLUSION 

A 60 GHz harmonic optoelectronic mixer based on a 
CMOS-APD is implemented and optimized. At the bias 
voltage of avalanche breakdown on-set voltage, harmonic 
frequency up-converted power is enhanced due to the 
enhanced avalanche gain.  Using the harmonic CMOS-OEM, 
5 MS/s 32 QAM data signal was successfully up-converted to 
60 GHz band and transmitted with 5.42 % EVM. Harmonic 
CMOS-OEM can be easily integrated with other necessary 
CMOS circuits, and, consequently, provides a possibility for 
system-on-chip (SoC) realization of base stations. 
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Fig. 6. Experimental setup for 60GHz downlink data transmission using harmonic
optoelectronic mixer based on CMOS-APD. 

Fig. 5. Fundamental and harmonic frequency up-converted 
signal powers as a function of reverse bias voltage. 
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(a)

(b)

Fig. 7. (a) Harmonic frequency up-converted signal spectrum 
at the output of antenna base station. (b) Constellation and eye 
diagram of demodulated downlink data (5 MS/s 32 QAM) 
signal. 
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