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Abstract—Electro-optical (E/O) frequency-response of a Si 

ring modulator (RM) is characterized both in the magnitude and 
the phase domain for RM-based coherent transmitter 
performance optimization. The RM’s complex E/O responses are 
measured with heterodyne coherent reception, and the measured 
results are confirmed with the simulated. 

 Keywords—Si ring modulators, phase modulation, electro-
optic response, heterodyne measurements 

I. INTRODUCTION 
Si photonics has shown significant advancement over the 

past decade, enabling mass-producible large-scale photonics 
integrated circuits (PICs) for such applications as high-
performance optical interconnects, sensors, neuromorphic 
computing, and quantum photonics [1]. In particular, Si 
photonic interconnect solutions based on the intensity-
modulation direct detection (IM/DD) technique have made great 
contribution in enhancing data-center interconnect 
performances in terms of bandwidth, power consumption, size, 
and cost. However, with the continuously increasing demand for 
services based on hyper-scale data centers, there still exists 
strong desire for further performance improvement [2,3]. With 
this, there are emerging research interests in the coherent 
modulation technique for the short-reach applications [4]. The 
coherent technique can provide much higher transmission 
capacity but has been used mainly for long-distance applications. 
In order to bring the coherent technique to the short-reach 
applications, there are many technical challenges that need to be 
overcome, and one of them is realization of compact yet high-
performance I/Q modulators in the Si photonics platform.  

Si ring modulators (RMs) offer the great advantage of the 
small device footprint and their excellent IM/DD modulation 
performance has been well demonstrated [5]. In addition, 
coherent modulators based on the Si RM have been recently 
reported [6-8], which clearly demonstrate the feasibility of using 
Si RMs as high-performance coherent transmitters. With this 
development, there is a strong need for clear understanding of 
the Si RM phase modulation characteristics, but not many 
previous research results are available on this topic. In this paper, 
the E/O frequency responses of the Si RM are characterized both 
in the magnitude and the phase domain with the heterodyne 
coherent reception technique. The measurement results are 
confirmed with the simulated results obtained with the Si RM 
model based on the coupled-mode theory. This model provides 

a powerful tool for analyzing and optimizing Si RMs for 
coherent applications. 

II. DEVICE DESCRIPTION 
Fig. 1(a) presents a chip photograph of a Si RM fabricated 

with the IHP Si photonics technology. The RM has 16-µm 
radius, 220-nm coupling gap, and a rib waveguide structure with 
220-nm thickness, 500-nm width and 100-nm slab thickness. 
The nominal peak carrier concentrations of PN diode in the ring 
waveguide are 7 x 1017 cm-3 for P dopant and 3 x 1018 cm-3 for 
N dopant. The RM is designed to have the over-coupling 
condition [9], which provides 2π phase shift around the 
resonance, λres. With this, π-phase modulation at the operation 
wavelength, λin, can be achieved while maintaining the same 
optical intensity as graphically shown in Fig. 1(b). The 
fabricated RM has 10.0-dB insertion loss, Vπ of 5.7 Vpeak-to-peak 
at λin. 

 

 

 
Fig. 1. (a) Chip photograph of a fabricated Si RM, (b) phase modulation 
operation point of over-coupled RM. 
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III. COMPLEX E/O RESPONSE CHARACTERIZATION 
Fig. 2(a) shows the measurement setup for complex E/O 

response characterization of the π-phase-modulated Si RM. The 
electrical signal is supplied from the RF signal source and 
amplified by an RF amplifier so that the desired Vπ is delivered 
to the RM through a bias-T. The laser source feeds an optical 
input to the RM, and the modulated  signal is amplified by an 
erbium-doped fiber amplifier (EDFA) and received through a 
commercial coherent receiver (CoRx). Another laser source 
supplies a local oscillator (LO) signal to the CoRx for 
heterodyne reception. The resulting CoRx output signals are 
acquired with a real-time oscilloscope (RTO) for an off-line 
digital signal processing (DSP). The DSP performs carrier 
frequency offset compensation and digital bandpass filtering. By 
taking fast-Fourier transformation, the complex E/O response of 
RM can be obtained. The response of the CoRx and the response 
of the RF amplifier are de-embedded. 

In addition, the complex E/O frequency response of the RM 
is simulated using the coupled-mode theory (CMT) model [10]. 
The time-domain responses of the RMs can be calculated with 
the model parameters obtained from the measured optical 
transmission spectra and electrical reflection coefficients. Then, 
by taking Fourier transformation of the time-domain responses, 
the complex E/O frequency response can be determined. 

Fig. 2(b) shows the measured and the simulated magnitude 
and phase frequency responses. Although measurement data 
contain a certain amount of errors most likely due to incomplete 
de-embedding of the components used in the measurement, the 
overall measurement results agree well with the simulation 
results. In Fig. 2(b), the 3-dB drop in the magnitude response is 
observed at 18.5 GHz, and at this frequency, the phase response 
increases about +0.25π compared from the low-frequency value. 
This coincidence of 3-dB magnitude drop and 0.25π phase 
increase at the same frequency suggests that Si RM phase 

modulation can be modeled with a simple one-pole system. This 
can be confirmed with the RM small-signal model given in [11], 
which has two-poles and one-zero. In the case of the over-
coupled Si RM with λin close to λres, one-pole and one-zero 
cancel each other out so that its characteristics are dominated by 
one pole.  

 

IV. CONCLUSION 
The complex E/O frequency responses of the Si RM are 

characterized. The measured responses are confirmed with the 
simulation results. Our characterization technique provides a 
power tool with which the RM can be best optimized for desired 
coherent transmitter performance. 
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Fig. 2. (a) Measurement setup for characterization of complex E/O responses of the RM and (b) measured and simulated normalized meagnitude and phase 
responses of the RM. (PC: polarization controller, GC: grating coupler, EDFA: erbium-doped fiber amplifier, VOA: variable optical attenuator, DSP: digital-
signal processing) 
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