www.osk.or.kr

저탄소 디지털 경제에서 광네트워크의 역할

- Role of optical network in the low-carbon digital economy -

- o 일 자 2021년 10월 20일(수)~10월 22일(금)
- 장 소 메종글래드제주 2층 크리스탈 홀
- 주 최 광인터넷포럼, 한국광학회
- 형 식 온라인/오프라인 병행
- o 웹사이트 https://www.osk.or.kr/conference/event/index.php?cfrid=19
- • 원 과학기술정보통신부, ETRI, IITP, NIA, KAIST, 한국광기술원, 한국광산업진흥회, 케이티, SKT/SKB, LGU+
- 협 찬 넷비젼텔레콤, 라이트론, 비아비솔루션스코리아, 에치에프알, 오이솔루션, 옵티코어, 우리넷, 우리로, 켐옵틱스, 코위버, 텔레다인르크로이, 텔레필드, 팬옵틱스, 포인투테크놀로지, 피피아이

둘째 날(Day 2) 10월 21일 목요일(II)								
시간	내용	좌장/발표자						
	개회식	이준기/ETRI						
14:00~14:30	개회사	광인터넷포럼의장						
	환영사	한국광학회장						
	축사	조직위원장						
	격려사	과기정통부						
	Plenary 세션	신종윤/SKT						
14:30~16:10 (50분 발표)	근거리 광통신 기술	정윤철/KAIST						
	공공분야 디지털전환 정책	박덕수/행정안전부						
16:10~16:30	:10~16:30 휴식							
	세션 4: 포토닉스 응용 기술	박경현/ETRI						
	Photonics 응용 국내외 레이다 개발 동향	장성훈/ADD						
16:30~18:00 (30분 발표)	Perspectives on silicon optical phased array for wireless data transmission and image sensor applications	박효훈/KAIST						
	포토닉스 기반 THz 근거리 통신을 위한 핵심 부품 기술 개발	이일민/ETRI						

	셋째 날(Day 3) 10월 22일 금요일					
시간	시간 내용					
	세션 5: 탄소중립을 위한 광통신	김장선/팬옵틱스				
09:00~10:15	A new Electrical Dispersion Compensation methodology for 25Gbps data-rate and beyond	박진호/ Point2 Technology				
(25분 일표)	반도체 기반 광스위치	한상윤/DGIST				
	데이터센터의 탄소발자국 줄이기	김주환/NHN				
10:15~10:30	휴식					
	세션 6: 양자, 국방 및 공공 인프라	양종한/NIA				
	1 테라를 지향하는 초연결 지능형 연구개발망 (KOREN) 익익	김형우/KT				
10:30~12:10	국방정보통신망을 위한 다매체 다중경로 네트워크 최적화 기술	정병창/ 경상국립대학교				
(25분 발표)	양자 ICT 산업화 사례와 양자암호통신 테스트베드 실증 현황	나성욱/NIA				
	QKD 및 키관리 시스템 구축 기술과 출연(연) 적용 사례	이원혁/KISTI				

* 본 프로그램은 사정에 따라 변경될 수 있습니다. * 정부의 코로나 방역지침에 따라 단체 중식은 제공하지 않음을 양지하여 주시기 바랍니다.

제21회 광인터넷	<mark>워크숍</mark> (OIW 2021)	프로그램 안내
-----------	-----------------------------	---------

	첫째 날(Day 1) 10월 20일 수요일			
사간	내용	좌장 / 발표자		
13:00~13:30	등록			
	Tutorial 세션	최준균/KAIST		
13:30~14:50	디지털 트랜스포메이션과 Telco의 비즈니스 트랜스포메이션	모순래/ KT경제경영연구소		
(40군 월표)	광대역, 저전력화를 위한 실리콘 포토닉스 기술	정석환/수원대		
14:50~15:00	휴식			
	세션 1-1: 광통신 소자/부품 기술	이원기/오이솔루션		
	유무선통합형 광트랜시버 개발 및 실증	정소기/SKB		
15:00~16:30 (30분 발표)	IOT 및 특화망을 위한 국산 5G 모듈 기술 및 Eco-system	이성규/ 에이엠솔루션즈		
(00) 211	FOWLP 기반 고집적 웨이퍼레벨 All-in-One Hybrid 광패키징 기술	최성욱/라이팩		
16:30~16:50	16:30~16:50 휴식			
	세션 1-2: 광통신 소자/부품 기술	백용순/ETRI		
	5G 프론트홀 광부품 기술	임동성/레신져스		
16:50~18:20 (30분 발표)	데이터 센터용 광트랜시버 개발을 위한 실리콘 포토닉스 소자 및 집적 기술	박성봉/삼성전자		
	저전력 초고속 실리콘 링 변조기	최우영/연세대		
	둘째 날(Day 2) 10월 21일 목요일(I)			
시간	내용	좌장 / 발표자		
	세션 2: 광통신 장비 기술	김선미/ETRI		
	WiFi6E 인도어 빅데이터 처리 기술	이주연/올래디오		
09:00~10:30 (30분 발표)	커버리지 확대와 속도증대를 위한 PON 리피터 기술	김광옥/ETRI		
(00년 일파)	미래 네트워크 구축을 위한 차세대 광동신 장비 기술과 역할	이원희/코위버		
10:30~10:50	휴식			
	세션 3: 미래 광대역 서비스	최성호/IITP		
	메타버스 최신동향 및 발전방향	이남경/ETRI		
10:50~12:30	5G MEC 기반 융복합서비스 적용사례	고선경/LGU+		
(25분 발표)	5G 특화망 동향과 유스케이스	박동주/에릭슨LG		
	6G 서비스와 통신기술 전망	고영조/ETRI		

중식

12:30~14:00

저전력 초고속 실리콘 링 변조기

JNIV

연세대학교 전기전자공학과 High-Speed Circuits and Systems Lab 최우영

Data Centers

Global DC IP Traffic

(in exabytes per year)

(Statista 2021)

Data Center Network

Google Data Center Network

Ref: "A Decade of Clos Topologies and Centralized Control in Google's Data Center Network (Plus a Look Ahead)", Amin Vahdat, ONS 2015 Keynote

Total bandwidth: 2 Tbps \rightarrow 10 Tbps \rightarrow 100 Tbps \rightarrow 200 Tbps \rightarrow 6 Petabps

Why photonics for interconnects?

Co-Packaged Optics

Requirements on Optical Tx

- MMF or SMF ?
- Direct or external modulation?
- Large modulation bandwidth density
- High energy efficiency (small J/bit)
- CMOS compatibility (MCM)
- Large scale integration

- ➔ Si Micro-Ring Modulator (Si MRM) for Photonic I/O
- → Disaggregated DC Architecture

High-Performance Si MRM

<112-Gb/s PAM4 transmitter>

intel.

(Intel, OFC 2019)

Si Photonic I/O Research at Yonsei

- IHP Photonic BiCMOS

innovations for high performance microelectronics

Monolithic integration of Si photonic devices and High-performance SiGe HBT

Monolithic Si Photonic WDM Transmitter

- 100Gbps (4 x 25 Gbps) Tx

- Accurate modelling of Si MRM
- Optimization of driver circuits by electronic-photonic co-simulation
- Temperature controller for Si MRM

Model Parameter Extraction

 $Q_{Unloaded} = \frac{\omega_{res}\tau_l}{2}, Q_{Loaded} = \frac{\omega_{res}\tau}{2}$

					Wa	veleng	gth [n	m]			
		155	6.40	155	6.45	1556	.50	1556	.55	1556.	60
Norr		-20	_ <u>○</u>	-3 V -4 V Sim.		∖ ∽⁴⊾	XX				
nalize	ط	-15		0 V -1 V -2 V	X		Ň.	14			
d Tra	(P _{in})	-10	- Bias	Voltage				1	A P		
nsmiss	[dB]	-5			2999	80		The state of the s			
<u>ē</u> .		0	-			'		'		-	

<Extracted parameters>

V _{Bias} (V)	n _{eff}	τ _l (ps/rad)	τ (ps/rad)
0	2.632166	22.7239	12.8595
-1	2.632185	22.9560	12.9335
-2	2.632216	23.5576	13.1224
-3	2.632233	23.5578	13.1225
-4	2.632250	23.5579	13.1225

Equivalent Circuit SPICE Model for RM

< Calculated RC Parameters for D_{λ} =70ph
--

$V_{\rm Bias}({ m V})$	R_1 (k Ω)	<i>C</i> (fF)	$R_2(\mathbf{k}\Omega)$	<i>L</i> (nH)
0	2.07	7.14	10.00	
-1	3.15	4.70	9.96	
-2	5.15	2.87	9.71	114.41
-3	7.19	2.06	9.71	
-4	8.99	1.65	9.71	

Evargain	mid	VSS	VCVS	POLY(1) in	n vss	2.91606e-1	1.46931137e-1	2.52937513e-2
lvar	mid	out	R='V(in)	*V(in)*290	0 + V(in)*15	69 + 3004"		
Cvar	out	VSS	C='V(in)	*V(in)*9e-	-16 - V(in)*	2e-15 + 4.0992e-15	CTYPE=1	
R2var	out	mid_ind	R='V(in)	*V(in)*50	.767 + V(in)	*253.93 + 10203*		
Ll	mid ind	VSS	114.413	1				

.option finesim_delmax=0.1p .tran 0.1p lu

Verification with Measurement Results

- ✓ 4V_{peak-to-peak} swing driving PRBS31, 25-Gbps
- ✓ Freq. response of Orx, oscilloscope included
- ✓ Simulated by Synopsys HSPICE
- ✓ Simulation time is 4.43s for 1-us transient (Verilog-A model: 980.25s)
 - →220 times faster!

<Photonics Research, 2019>

Co-simulation with Driver IC

<OFC, 2018>

PAM-4 Signal Optimization with Co-simulation

Measurement Setup

Measurement Results

Temperature Sensitivity of Si RM

Temperature Control with Temp. Sensor

Measurement Setup

Measurement Results

Performance Comparison

	15' JSCC	18' ISSCC	16' JSSC	16' JSSC	19' JLT	This Work
Process	130nm SOI SiPh + 65nm CMOS	100nm SOI SiPh + 65nm CMOS	130nm SOI SiPh + 40nm CMOS	45nm CMOS S OI	0.25µm BiCMOS	0.25µm Photonic BiCMOS
Wavelength	1550 nm	1310 nm	1550nm	1180 nm	1550 nm	1550nm
Demo. data-rate	25 Gb/s	10 Gb/s	2 Gb/s	5 Gb/s	25 Gb/s	25Gb/s
Driver Integration	O (Wire-bonded)	O (3D face-to-face)	O (Wire-bonded)	O (Monolithic)	х	O (Monolithic)
Controller Integration	X (Off-chip PD)	O (3D face-to-face)	X (Off-chip DAC)	O (Monolithic)	X (Off-chip PD)	O (Monolithic)
Scheme	Average Power	Analog closed- loop w/ digital reconfig.	OMA monitor w/ slope quantizati on	Bit-statistics	OMA monitor w/ power detector & wo-step approac h	OMA monitor w/ Temp. sensing & PID control
Manual Reference Setting	0	О	х	х	х	x
Resonance wavelength tuning range	N/A	N/A	5 nm	2.5 nm	0.55 nm	3.27 nm
Controller Power	0.17 mW	0.15mW	2.9 mW	0.72 mW	3.91 mW	3.325 mW
Energy efficiency	0.0068 pJ/bit	0.015 pJ/bit	1.45 pJ/bit	0.144 pJ/bit	0.1564 pJ/bit	0.133 pJ/bit

✓ Monolithic, high data-rate, and energy-efficient

<OFC, 2020>

<Photonics Research, 2021>

Summary

• Importance of Si Photonics for Data Center Connectivity

- Co-Packaged Optics requires
 - Large bandwidth, Energy efficiency, Size efficiency
- For Tx, Si MRM is most promising

- Lots of active R&D efforts for Si MRM based photonic integrated circuits and systems

• At Yonsei

- Based on IHP's Photonic BiCMOS technology
- 100 Gbps (25 Gbps x 4 λ ') Si MRM EPIC solution with built-in temperature controller achieved
- For successful photonic I/O R&D, expertise both in photonics and electronics needed