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Abstract: We demonstrated the non-volatile operation of a Si PN ring resonator with a
ferroelectric HfZrO, capacitor. Due to the polarization in the HfZrO, capacitor, the resonance
wavelength of the ring resonator shows the bi-stable operation. © 2021 The Authors.

1. Introduction

An optical phase shifter is a key component for optical modulators and switches. Among the various phase
change schemes in silicon (Si) photonics platform, a free-carrier plasma dispersion effect in Si is commonly used
for a CMOS-compatible, fast, and effective optical phase shifter. To change the free carrier concentration in Si, a
PN junction with a ring resonator is widely used for the realization of high-speed and compact optical modulators
and switches [1]. There are also many applications using this Si PN ring resonator, such as a large-scale switching
array [2] and neuromorphic photonics [3]. To achieve efficient and multi-functional optical phase shifters for these
applications, the non-volatile or bi-stable operation of the optical phase shifter is widely investigated using a
phase-change material (PCM) [4] or a ferroelectric BaTiO3; (BTO) [5]. However, these approaches have several
problems, such as high loss due to the metal phase of PCM and non-CMOS-compatible materials or processes. In
this paper, we demonstrate the feasibility of a non-volatile phase shifter using a Si PN ring resonator with a
capacitor realized with the ferroelectric hafnium-zirconium oxide (HfZrO,; HZO), a state-of-art ferroelectric
material in the CMOS-compatible technology [6].

2. Si PN Ring Resonator with Ferroelectric HZO Capacitor

To achieve non-volatile operation of an optical phase shifter with PN junction, a ferroelectric capacitor is
connected to Si PN ring resonator in series as shown in Fig. 1(a). Memory operation in the ferroelectric capacitor
enables the bi-stable operation of the Si PN junction [7]. In this system, two states are expected. First, after the
reverse bias is applied, the depletion layer of the PN junction is expanded compared to the initial state of the PN
junction because of the remnant polarization (Pr) in the ferroelectric capacitor as shown in Fig. 1(b). After the
forward bias is applied, the depletion layer becomes narrower compared to the initial state because of the opposite
remnant polarization as shown in Fig. 1(c). The depletion layer difference between the two states makes the
difference in the resonance wavelength for the Si ring resonator. As shown in Fig. 1(a), a voltage is applied to the
series connection, the applied voltage is separated according to Eq. (1), where Veero, Ven, Crero, and Cpy are the
voltage and capacitance of the ferroelectric capacitor and the Si PN ring resonator, respectively. Therefore,
capacitance matching between the ferroelectric capacitance and the PN junction capacitance is important in order
to increase P;, which decides the non-volatile window of this system. In this paper, we investigated the feasibility
of the non-volatile operation using the series connection of a Si PN ring resonator and a ferroelectric capacitor. The
resonance wavelength shift of the ring resonator was investigated after applying and removing the forward or
reverse bias voltage. We also investigated the relationship between the resonance wavelength shift and the
capacitance ratio of a ferroelectric capacitor and a PN resonator.
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Fig. 1. Schematic of a ferroelectric capacitor and a Si PN ring resonator series connection. (a) circuit model, (b) energy band
diagram after reverse bias and (c) energy band diagram after forward bias.
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2.1 Characteristic of Ferroelectric HZO capacitor

We fabricated a metal-ferroelectric-metal (MFM) capacitor using HZO. The fabrication process flow,
schematics, and SEM image of the crossbar HZO capacitor are shown in Fig. 2(a). First, a 60-nm-thick tungsten
(W) layer for a bottom electrode was deposited on an Al,O3 substrate by DC sputtering. A 10-nm ferroelectric
HZO layer was deposited by the atomic layer deposition (ALD) technique at 250°C using TEMAHTf, TEMAZr, and
H20 as Hf, Zr, and O precursors, respectively. A 60-nm-thick W top electrode was formed by the lift-off process.
Ti/Au pads were also deposited on the bottom and top electrodes. Then, a ferroelectric capacitor was annealed at
500°C by the rapid thermal annealing (RTA) process in the N, atmosphere for 30 s. As shown in Fig. 2(a), the
crossbar shape of the ferroelectric capacitor was fabricated successfully. Figure 2(b) shows a capacitance—voltage
(C-V) curve at 100 kHz for the ferroelectric capacitor having the area of 4 x 4 ym?. Positive and negative coercive
voltages are about 0.8 V and -0.75 V, respectively. Figure 2(c) shows polarization—voltage (P-V) curves of the
ferroelectric capacitor for various programming voltages. P-V measurement was performed using a triangular
voltage pulse at 2.5 kHz after wake-up cycling. As shown in Fig. 2(c), the polarization in the ferroelectric capacitor
is changed by the applied voltage; thus, capacitance matching between the PN resonator and the ferroelectric
capacitor is important to control the remnant polarization at the ferroelectric capacitor, which decides the non-
volatile window of resonance wavelength.
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Fig. 2. (a) Fabrication process, cross-sectional schematic diagram and SEM image of ferroelectric capacitor, (b) C—V curve
of ferroelectric capacitor, (c) P—V curve of ferroelectric capacitor.

2.2 Characteristics of Si PN Ring Resonator

Fig. 3(a) shows the transmission characteristics of the Si PN ring resonator used in this investigation. The
device was fabricated by IHP's Si Photonics technology. It has 16-um radius and 230-nm gap for ring and bus
waveguides made up of 500-nm wide and 220-nm thick rib waveguides. In the lateral PN junction, the nominal
peak carrier density is 7 x 10%7/cm?® for the p-region and 3 x 10*8/cm? for the n-region. Figure 3(b) shows the C-V
measured C-V characteristics for the Si PN ring resonator.
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Fig. 3. (a) Modulation efficiency of Si PN Ring Resonator, (b) C-V Curve
3. Non-Volatile Phase Shift in Si PN Ring Resonator

The optical and electrical measurement setup used in the experiment is as shown in Fig. 4(a). The Si PN ring
resonator was connected in series with the HZO capacitor with probes and an electrical cable. Before this
connection, the triangular voltage purse of +3 V was applied to the HZO capacitor for waking up the HZO
capacitor [6]. After the HZO capacitor is connected to the Si PN ring resonator, the resonance wavelength is
shifted left owing to the programmed HZO capacitor as mentioned before. Even if the forward bias of 2.5 V is



applied, the resonance wavelength does not change because it was already programmed before connection as
shown in Fig. 3(b). The blue dashed-line in Fig. 4(c) shows the measured output power spectrum when the bias
voltage of -6 V is applied. The wavelength shift of 79.2 pm is observed from red solid line to blue dashed line,
which is same result to the wavelength shift when the reverse bias of -4.4 V is applied to the Si PN ring resonator.
This voltage dividing at the Si PN ring resonator is caused by the ratio between the Si PN ring resonator and the
HZO capacitor, which is approximately 2:5. Then, as shown in Fig. 4(c), when the bias voltage is changed from -
6 V to 0 V, the measured output power spectrum shows the about 20 pm shift to the right compared to the curve
obtained with the initial 0 V bias (from red solid line to yellow solid line). This is because the depletion width of
the Si PN ring resonator is expanded by the polarization of the HZO capacitor as shown in Fig. 1(b). This
resonance wavelength shift can be greatly enlarged by the large polarization in the HZO capacitor, which can be
achieved by improvement in capacitance matching for the Si PN ring resonator and the HZO capacitor.
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Fig. 4. (a) Circuit diagram of measurement setup, (b) optical power as a function of wavelength in forward mode, (c) reverse
mode.

4. Conclusion

We successfully demonstrated the feasibility of a non-volatile optical phase shifter using the Si PN ring
resonator with the ferroelectric HZO capacitor. Due to the remnant polarization in the HZO capacitor, we
confirmed the bi-stable behavior between forward and reverse bias. We also confirmed the resonance wavelength
of the Si PN ring resonator is shifted 20 pm between the two polarization states between forward and reverse bias.
The wavelength shift can be enlarged by the polarization enhancement in the HZO capacitor. The presented non-
volatile optical phase shifter can be a promising solution for high-efficient and multi-functional optical phase
shifters.
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The optical and electrical measurement setup for the experiment is shown above. The presented non-volatile optical phase shifter is a promising for high efficient and

multi-functional optical phase shifters.
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