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A Fully Integrated 25 Gb/s Si Ring 
Modulator Transmitter with a Tem-
perature Controller,  Minkyu Kim1, 
Min-Hyeong Kim1, Youngkwan Jo1, 
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tian Mai2, Lars Zimmermann2,3, Woo-
Young Choi1; 1Department of Electrical 
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with a 0.25-μm photonic BiCMOS 
technology.

T3J.6 • 15:45 
Intent Defined Optical Network: 
Toward Artificial Intelligence-based 
Optical Network Automation,  Kai-
xuan Zhan1, Hui Yang1, Qiuyan Yao1, 
Xudong Zhao1, Ao Yu1, Jie Zhang1, 
Young Lee2;  1State Key Laboratory 
of Information Photonics and Opti-
cal Communications, Beijing Univ. 
of Posts and Telecommunications, 
China;  2Huawei Technologies Co., 
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Watson Research Center, USA.  We 
propose an HPC network architecture 
with co-packaged optics enabling 128-
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for a >34,000-accelerator system show 
up to 11.2x throughput improvement 
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opening the way to direct-network-
attached GPUs.

16:00–16:30  Coffee Break, Upper Level Corridors and Exhibit Hall

 MW Panel III: Optical 
Interconnect and 
Computing for Scaling 
Machine Learning (ML) 
Systems 
14:30–16:00, Theater I

Standards Update on 5G 
Transport (and more) 
ITU-T SG15 
14:45–15:45, Theater III

Embedded Optics and 
How They Should Be 
Done to Support the 
OEM Eco–system – Panel 
Debate 
15:00–17:00, Theater II

Accelerating ROI on the 
Road to SDN 
SDN 
16:00–17:00, Theater III

OIDA Roadmap on 
Quantum Photonics 
16:15–17:00, Theater I

Show Floor Programming 
Continued

kyu
선

kyu
선

kyu
선

kyu
선

kyu
선

kyu
선



T3H.7.pdf OFC 2020 © OSA 2020

A Fully Integrated 25 Gb/s Si Ring Modulator Transmitter 

with a Temperature Controller 
 

Minkyu Kim1, Min-Hyeong Kim1, Youngkwan Jo1, Hyun-Kyu Kim1, 

Stefan Lischke2, Christian Mai2, Lars Zimmermann2,3, and Woo-Young Choi1 
1Department of Electrical and Electronics Engineering, Yonsei University, 03722 Seoul, South Korea 

2IHP, Im Technologiepark 25, 15236 Frankfurt (Oder), Germany 
3Technische Universitaet Berlin, Einsteinufer 25, 10587 Berlin, Germany 

minkyu226@yonsei.ac.kr 

 

Abstract: We realized a fully integrated 25Gb/s Si ring modulator transmitter containing a 

temperature controller that guarantees the optimal ring modulator temperature against any 
temperature perturbation. The transmitter is implemented with a 0.25-μm photonic BiCMOS 

technology. ©  2020 The Author(s)  

 

1. Introduction 

Silicon photonic transmitters based on Si ring modulators (RMs) are very attractive for numerous optical 

interconnect applications as they provide high-bandwidth and energy-efficient operation with much smaller 

footprints compared to Si Mach-Zehnder modulators. Recently, 112 Gb/s RM has been reported for 400G data 

center applications [1]. Furthermore, next-generation photonic switch systems are expected to rely on ring filters 
with their WDM-compatibility and small sizes. However, due to their resonance characteristics, ring modulators and 

filters suffer from severe thermal sensitivity and process variation problems. Consequently, the use of on-chip 

heaters and temperature control circuits [2–6], which provide temperature required for the optimal device 

performance, is essential for any practical application of ring modulators and filters. In [2,3], the average power of 

the modulated RM signal is controlled with the closed-loop feedback, but the target average power has to be set 

externally. In [4], the optical modulation amplitude (OMA) is directly monitored by high-speed sampling of 

designated modulation pattern with slope quantization. But high-speed sampling consumes a large amount of power 

when the data rate is high. OMA maximization based on bit-statistics based on the training data sequence can 
achieve low-power operation with precise control [5]. But in this implementation, maintaining the optimal condition 

when temperature and/or optical input power changes from the initial calibration can be a problem. In order to 

alleviate these problems, we have previously reported a custom-designed temperature control IC with which the 

optimal OMA condition is determined in the calibration mode and is maintained in the locking mode with the digital 

1-bit dithering technique [6]. But this IC is not monolithically integrated with the RM and consumes a fair amount 

of power due to its OMA monitoring block. 

In this paper, we present a fully integrated RM transmitter containing a new type of temperature controller with 

reduced power consumption. The new temperature control IC uses the power-hungry OMA monitor block only in 
the initial calibration mode. With an on-chip temperature sensor, the temperature control remembers the temperature 

for the optimal OMA and maintains the RM at this temperature with on-chip digital PID controller and heater. To 

the best of our knowledge, this is the first report of the fully integrated 25 Gb/s silicon photonic transmitter with a 

temperature controller in the C-band.   

2. Ring Modulator Temperature Controller  

Figure1(a) shows the block diagram of our custom-designed silicon photonic transmitter IC. It consists of three 

parts: modulator driver, photonics devices (Si RM and monitor Ge PD), and temperature controller. The driver 

amplifies 600mVpp,diff input NRZ data to deliver 3Vpp,diff to the depletion-type RM. The driver performance is 

optimized by co-simulation with the large-signal SPICE model for the RM [7,8] in the design stage. The radius of 

RM is 12μm and its waveguide width is 500nm. It contains a drop port, to which a monitor Ge PD is connected. An 

N-doped heater is placed within the ring waveguide, which can provide the tuning range of about 40% of the FSR. 

To sense the RM temperature, a PN-junction-based temperature sensor is placed outside the RM. The temperature 

controller has 4 blocks: OMA monitor, heater DAC, temperature-sensing ADC, and synthesized digital block which 

performs calibration and maintains the optimal condition. The OMA monitor block has trans-impedance amplifier 

(TIA) with 48dBΩ gain and 20GHz bandwidth, high-pass filter, power detector, track-and-hold (T/H) circuit, and 

comparator [6]. The digital synthesized block controls the heater DAC and turns on the OMA monitor only when 

needed so that power can be saved.   
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Figure1(b) shows the RM temperature control scheme in a flow chart. It has two modes. In the calibration mode, 

the heater voltage is swept, the heater voltage producing the maximum OMA is determined, and that heater voltage 

is saved as a digital code for the DAC. In the locking mode, the OMA block is turned-off to reduce power 

consumption, and the temperature ADC code is saved as a reference with which the optimal temperature is 

maintained by the digital PID control. In this way, the RM can maintain its optimal operation against any 

temperature perturbation.  

3.  Measurement Results 

Figure2(a) shows the photo of our electronic-photonic integrated circuit transmitter, realized with IHP’s 0.25-μm 

photonic BiCMOS technology [9], and the measurement setup. Input light is coupled into the chip through a grating 

coupler, and the modulated output light is coupled out with another grating coupler. The driver amplifies 600-

mVpp,diff input 25Gb/s PRBS 231-1 NRZ data and delivers them to the RM. The modulated output optical signal is 

amplified with an EDFA, and the commercial optical receiver converts the optical signal to electrical signal for the 

eye measurement. I2C bus is used for externally controlling and monitoring the digital block during the measurement. 

The temperature sensor and OMA monitor block consumes 2.6-mW and 1.5-mW, respectively, but the OMA 

monitor block is turned-off after the calibration mode. The synthesized digital block consumes 0.725-mW.  

Figures 2(b) and 2(c) show the results of the thermal stress test in which the chip-stage temperature is 

intentionally changed with a 5℃ sine-wave having period of 1000 seconds as shown in red dotted line in Fig. 

2(b). With temperature controller OFF, the eye closes completely as shown in the top of Fig. 2(c). With 

temperature controller ON, the controller produces DAC codes in response to the chip temperature change as 

shown with a blue line in Fig. 2(b). As expected, the heater voltage changes in the opposite direction to the chip 

temperature change so that the desired RM temperature can be always maintained. The bottom figure in Fig. 2(c) 
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Fig. 1. (a) Block diagram of the monolithic silicon photonic transmitter with temperature controller and 

(b) flow-chart of the control algorithm 
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Fig. 2. (a) Measurement setup, (b)thermal stress measurement and (c) 25 Gb/s eye-diagram with thermal stress  
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shows the accumulated eye maintaining near 5.2dB extinction ration (ER) for 16 minutes while the chip 

temperature changes.   

Table I compares the performances of recently reported RM temperature control ICs. As can be seen in the 
table, only [5] and our works determine the optimum condition without any external reference setting and are 

fully integrated. Although the power consumption reported in [5] is much smaller than our result, it is due to the 

much advanced SOI CMOS technology used in [5] not in the temperature control algorithm employed. In 

addition, the performance of our temperature control scheme should not depend on the data rate as is the case for 

[4]. We believe our approach based on photonic BiCMOS technology should find wide applications for high-

performance transceivers based on RMs and next-generation photonic switch systems based on WDM ring filters.  

Table I. Performance Comparison 
 

 [2] 16’ JSSC [3] 18’ ISSCC [4] 16’ JSSC [5] 16’ JSSC [6] 19’ JLT This Work 

Process 
130nm SOI SiPh + 

65nm CMOS 

100nm SOI SiPh + 

65nm CMOS 

130nm SOI SiPh +  

40nm CMOS 
45nm CMOS SOI 0.25μm BiCMOS 

0.25μm Photonic 

BiCMOS 

Wavelength 1550nm 1310nm 1550nm 1180nm 1550nm 1550nm 

Demo. 

data-rate 
25 Gb/s 10 Gb/s 2 Gb/s 5 Gb/s 25 Gb/s 25Gb/s 

Driver 

Integration 

O 

(Wire-bonded) 

O 

(3D face-to-face) 

O 

(Wire-bonded) 

O 

(Monolithic) 
X 

O 

(Monolithic) 

Controller 

Integration 

X 

(Off-chip PD) 

O 

(3D face-to-face) 

X 

(Off-chip DAC) 

O 

(Monolithic) 

X 

(Off-chip PD) 

O 

(Monolithic) 

Control Scheme Average Power 
Analog closed-

loop 

w/ digital reconfig. 

OMA monitor  

w/ slope 

quantization 

Bit-statistics 
OMA monitor  

w/ power detector 

& 1-bit dithering 

OMA monitor w/ 

Temp. sensing & 

PID control 

Manual 

Reference Setting 
O O X X X X 

Resonance 

wavelength 

tuning range 

N/A N/A 5 nm 2.5 nm 0.55 nm 3.27 nm 

Controller Power 

(Except heater) 
0.17mW 0.15mW 2.9mW 0.72mW 3.91mW 3.325mW 
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