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Abstract: We characterize photodetection frequency response of a waveguide-type Ge-PD on Si 
having larger than 50-GHz photodetection bandwidth using an equivalent circuit model. Our model 
provides accurate frequency responses and allows clear identification of different contributions.  
 
Keywords: Germanium photodetector, equivalent circuit model, Silicon photonics 

I. INTRODUCTION 

Germanium photodetectors (Ge-PDs) realized on Si wafers are an essential component for Si photonic integrated 
circuits. Recently, Ge-PDs having photodetection bandwidth larger than 50-GHz have been reported [1] and high-
performance monolithically integrated optical receiver circuits containing Ge-PDs have been demonstrated [2]. In order 
to achieve the optimal performance of integrated optical receivers, it is essential to have an accurate equivalent circuit 
model for Ge-PD that can be co-simulated with electronic circuits in the design stage. We have recently identified that 
the Ge-PD photodetection frequency response can be degraded with diffusion of photogenerated carriers and proposed 
an equivalent circuit model having two current sources, each of which respectively represents diffusion and drift of 
photogenerated carriers [3]. In this paper, we apply our modeling technique to the waveguide Ge-PD fabricated by 
IHP’s photonic BiCMOS process, which has the unique capacity of integrating Si photonics devices with high-speed Si 
BiCMOS electronic circuits [4]. 

 

II. EQUIVALENT CIRCUIT MODEL  

Fig. 1(a) shows the cross-section of the Ge-PD investigated in this paper. The intrinsic Ge layer is epitaxially grown 
on 220-nm thick, 750-nm wide Silicon-on-Insulator layer having 2-μm thick buried-oxide layer. The lateral PIN 
structure is realized with self-aligned implantation of P+ and N+ regions having peak concentrations of about 1 × 1018 

cm-3 using 600-nm wide silicon nitride (SiN). The Ge-PD is 20-μm long. Details of the Ge-PD can be found in [1]. 
Fig. 1(b) shows the electron-hole pair generation rate due to absorption of 1.55-μm input light simulated with 

Lumerical 3-D FDTD, and Fig. 1(c) the electric-field distribution within our device biased at –1 V simulated with 
TCAD Sentaurus. As can be seen in the figures, a fair amount of electron-hole pairs are produced in the region where 
the electric field is not very strong and those carriers have to transport by slow diffusion. In order to accurately model 
the photodetection frequency response, consideration should be given to such this diffusion component as well as the 
drift process within the region having strong electric fields. 

Fig. 2(a) shows the equivalent circuit model used in the present investigation. It has two current sources (I1 and I2) 
having different frequency responses for diffusion and drift of photogenerated carriers. Each current source has the 
single-pole frequency response with time constant τ1 for I1 and τ2 for I2, along with corresponding DC gain, A1 and A2, 

Fig. 1. (a) Cross-section of Ge-PD, (b) 3D-FDTD simulated generation-rate profile, and (c) simulated electric-field distribution at –1 V. 
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sum of which represents Ge-PD DC responsivity, normalized to one for simplicity in this paper. Zpara in the model 
represents passive electrical components due to interconnect, pad, parasitic resistances and capacitances. Specifically, 
Rint and Lint represent interconnect resistance and inductance, respectively, Cpad pad capacitance, Cox oxide capacitance, 
Rsi bottom silicon substrate resistance, and Cc-c capacitance between contacts. For modeling PIN junction, Rs represents 
series resistance, Cj depletion capacitance, and Rj depletion resistance. 

S-parameters are measured for open and short test patterns on the same wafer with a vector network analyzer from 
100 MHZ to 67 GHz, from which numerical values for Rint, Lint, Cpad, Cox, and Rsi are determined as 1.4 Ω, 56 pH, 16.7 
fF, 30 fF, and 2 kΩ, respectively. Measured S-parameters of Ge-PD are used for extraction of Rs, Cj, Rj, and Cc-c values. 
The extracted values are listed in Table I. 

To extract current source model parameters, the generation rate profile shown in Fig. 1(b) is imported into TCAD 
Sentaurus and two virtual generation rate profiles are created as shown in Fig. 3(a) and (b), one containing the 
generation rate only in the region where electric field is weak (< 2000 V/cm), representing the region where 
photogenerated carriers experience diffusion as shown in Fig. 3(a), and the other in the region where the electric field is 
strong (> 2000 V/cm), representing the region where photogenerated carriers experience drift in Fig. 3(b), respectively. 
Then we perform photodetection frequency response simulation for each case using TCAD Sentaurus and the results are 
fitted with single-pole frequency responses as can be seen Fig. 3(c). From these, we extract current source model 
parameters of τ1 and A1 for I1, and τ2 and A2 for I2 as listed in Table II. At –1-V bias voltage, about 9.2% of 
photogenerated carriers experience diffusion with the corresponding time constant of 15.9 ps.  

 

III. PHOTODETECTION FREQUENCY RESPONSE CHARACTERIZATION 

Fig. 4(a) shows the measured photodetection frequency response and the simulated result with our equivalent circuit. 
As can be seen, they agree well confirming the accuracy of our model. Using our equivalent circuit model, we can 
identify the contribution of each factor that influences the photodetection frequency responses. Fig. 4(b) shows the 
simulated results considering only τRC (without current sources in the equivalent circuit), τ1 and τ2 (without RC 
components), and τ2 (without current source for diffusion and RC components). For these simulations, only the Ge-PD 
core is considered without Zpara. As can be seen in the figure, the photodetection bandwidth is limited by carrier 
transport and the diffusion of photogenerated carriers further degrades the photodetection bandwidth. It should be also 
noted that the bandwidth limitation due to parasitics is not very significant due to the optimized fabrication process 
providing very small parasitic resistances. This type of identification can be of great help for further device optimization. 

TABLE I 
EXTRACTED RC PARAMETERS 

OF GE-PD AT -1V 
Rs [Ω] 80 
Cj [fF] 7.2 

Rj [kΩ] 100 
Cc-c [fF] 3.2 

τRC [ps] 0.9 

 

 
 
Fig. 2. (a) A modified equivalent circuit model of Ge-PD and (b) frequency responses of photogenerated current source models. 
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TABLE II 
EXTRACTED CURRENT SOURCE 

MODEL PARAMETERS AT -1V
τ1 [ps] 15.9 
A1 [%] 9.2 

τ2 [ps] 2.3 
A2 [%] 90.8 

 

 
 
Fig. 3. Virtual generation-rate profiles of photogenerated carrier (a) diffusion and (b) drift, and (c) simulated photodetection frequency responses of 
two current source models at –1 V. 
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IV. CONCLUSIONS 

We present an equivalent circuit model for waveguide-type Ge-PD on Si having greater than 50-GHz photodetection 
bandwidth and show how to extract model parameters for Ge-PD. Using our equivalent circuit model, we can identify 
those factors that limit the photodetection frequency response. Our equivalent circuit can be of great help in designing 
high-performance monolithic integrated optical receivers. 
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Fig. 4. (a) Measured and simulated photodetection frequency response and (b) simulated frequency responses with different time constant
contributions. 
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