

The 22nd Korean Conference on Semiconductors (KCS 2015)

제22회 한국반도체학술대회

2015년 2월 10일(화)-12일(목), 인천 송도컨벤시아

M. RF Design 분과

Room K 1F / 102+103호

2015년 2월 12일(목) 13:10-14:40

[TK2-M] CMOS RF Device and Circuit Solutions

좌장: 이강윤 (성균관대학교), 박준배 (아나패스)

TK2-M-1	13:10-13:25	Circuit-Level Modeling of 10-Gbps Si-Photonic Transceiver
		Minkyu Kim, Myungjin Shin, Tongsung Kim, and Woo-Young Choi
		Department of Electrical and Electronic Engineering, Yonsei University
TK2-M-2	13:25-13:40	The Conducted Radiation Modeling Method for Automotive IC
		Sanghyeon Park, Dongsoo Lee, and Kang-Yoon Lee
		Department of Information and Communication Engeeneering,
		SungKyunKwan University
TK2-M-3	13:40-13:55	Performance Improvement of On-Chip Inductor Using Novel Patterned
		Ground Shield Structure and Thick Metal Layer
		Jin-Woong Jeong, Sung-Yong Jang, Sung-Woo Lee, Sung-Kyu Kwon, Choul-
		Young Kim, Ga-Won Lee, and Hi-Deok Lee
		Dept. of Electronics Engineering, Chungnam National University
TK2-M-4	13:55-14:10	Low Power, Wide Range, High Speed Digitally Controlled Ring Oscillator
		Seong Jin Oh, Sang-Yoon Kim, and Kang-Yoon Lee
		College of Information and Communication Engineering, Sungkyunkwan
		University
TK2-M-5	14:10-14:25	10bit Low Power SAR ADC Design for Multi-Channel Sensing
		Dong-Hyeon Seo, Hyung-Gu Park, and Kang-Yoon Lee
		Information and Communication Engineering, Sungkyunkwan University
TK2-M-6	14:25-14:40	A Third Order Active Notch Filter with Process Variation Compensation
		and Tunable Frequency Range for Suppressing Spurious Emission
		Seung-Won Choi, Dong-Soo Lee, and Kang-Yoon Lee
		College on Information and Communication Engineering, SungKyunKwan
		University

Circuit-Level Modeling of 10-Gbps Si-Photonic Transceiver

Minkyu Kim, Myungjin Shin, Tongsung Kim, and Woo-Young Choi

Department of Electrical and Electronic Engineering, Yonsei University, Seoul 120-749, Korea E-mail: minkyu226@yonsei.ac.kr

Recently, there are growing interests in Si-photonics for optical interconnect applications as it can provide high-performance integrated photonic devices in a cost-effective manner [1]. For successful design of integrated Si-photonic and electronic circuits for the target interconnect applications, it is very important to co-simulate photonic devices and electonic circuits on a single simulation platform. In this paper, we present a behaviour model of Si micro-ring modulator implemented in Verilog-A, a hardware description language often used for high-level behavioral modeling of electronic systems, and circuit-level simulation of this behaviour model with other electronic circuits for 10-Gbps transceiver realization. Fig. 1(a) shows the block diagram for the target transceiver. The electronic circuit block is composed of PRBS generator and error-rate tester that allow on-chip self-testing, for serializer and deserializer, modulator driver and transimpedance amplifier. The optical block consists of Si micro-ring resonator and Ge photodetector. Fig. 1(b) and (c) are trasmitted and received eye diagrams, respectively, obained from the simulation done entirely in Spice. With such co-simulation of photonic devices and electronic circuits, design optimization of the entire Si-photonic transceiver can be easily performed allowing more successful implementation of the target optical interconnects in a more cost-effective manner.

Fig 1. (a) Block diagram of Si-photonic transceiver and eye-diagram of (b) transmitted data and (c) received data

[1] X. Zheng et al., Optics Express(2011), Vol. 19, No. 6